GCPC 2012

GCPC 2012 Jury

gcpclgepe .nwerc. eu

30.06.2012

GCPC 2012 Jury GCPC 2012 30.06.2012 1/18

w Battleship

@ Solve by Simulation
@ Read problem statement carefully
e Ending the game and draw may be tricky cases

GCPC 2012 Jury GCPC 2012 30.06.2012 2/18

w BrainfuckVM

@ Problem: decide whether a program terminates

GCPC 2012 Jury GCPC 2012 30.06.2012 3/18

s BrainfuckVM

Problem: decide whether a program terminates

@ Solution: simulate program while keeping track of
states

@ simulate concurrently at normal and at double speed
(Floyd /Brent'’s cycle trick)

if both simulations have equal state: loop!

@ needs clever state comparison to be fast enough

GCPC 2012 Jury GCPC 2012 30.06.2012 3/18

s BrainfuckVM

@ = simpler solution: just simulate 50 000 000 steps
@ if not terminated — loop

@ simulate another 50000 000 steps to get loop
instructions

@ no state comparison needed

GCPC 2012 Jury GCPC 2012 30.06.2012 4/18

@ Candy Distribution

@ K kids, C candies in one bag

@ to compute: #bags bsothat b- C = (K- X)+1
(X is a positive integer)

GCPC 2012 Jury GCPC 2012 30.06.2012 5/18

s Candy Distribution

@ K kids, C candies in one bag

@ to compute: #bags bsothat b- C = (K- X)+1
(X is a positive integer)

e =b-C=1modK

GCPC 2012 Jury

GCPC 2012

30.06.2012

5/

18

@ Candy Distribution

@ K kids, C candies in one bag

@ to compute: #bags bsothat b- C = (K- X)+1
(X is a positive integer)

e =b-C=1mod K

@ compute modular inverse with extended euclid

@ be careful with special cases like K =1, C =1, or
both

GCPC 2012 Jury GCPC 2012 30.06.2012

5/

18

s Candy Distribution

@ K kids, C candies in one bag

@ to compute: #bags bsothat b- C = (K- X)+1
(X is a positive integer)

e =b-C=1mod K

@ compute modular inverse with extended euclid

@ be careful with special cases like K =1, C =1, or
both

@ equation solvable if K and C coprime

GCPC 2012 Jury GCPC 2012 30.06.2012 5/18

Vg,

s Outsourcing

@ Underlying problem: Check two DFAs for
equivalence

GCPC 2012 Jury GCPC 2012 30.06.2012 6 /18

Vg,

s Outsourcing

@ Underlying problem: Check two DFAs for
equivalence

@ No bruteforcing possible (how?)

GCPC 2012 Jury GCPC 2012 30.06.2012 6 /18

Vg,

s Outsourcing

@ Underlying problem: Check two DFAs for
equivalence

@ No bruteforcing possible (how?)
@ Possible solution:

GCPC 2012 Jury GCPC 2012 30.06.2012 6 /18

Vg,

s Outsourcing

@ Underlying problem: Check two DFAs for
equivalence

@ No bruteforcing possible (how?)
@ Possible solution:

e Minimize both DFAs (see Hopcroft/Ullman)

@ Check for equivalence by for example DFS:

e Simultaneous DFS on the two minimized automatas
numbering the states in preorder

@ Check if the state reached by an input character has
same DFS number or is unvisited

@ Check if the final states have the same DFS number

o Runs in O(|states|? - |Z|)

GCPC 2012 Jury GCPC 2012 30.06.2012 6 /18

Vg,

s Outsourcing

@ Smart algorithm by Hopcroft and Karp:

GCPC 2012 Jury GCPC 2012 30.06.2012 7 /18

s Outsourcing

@ Smart algorithm by Hopcroft and Karp:
e Join the automata
@ Union states that are reached by the same inputs by DFS
o After all, check if there is a union of exactly the two final
states
o Really fast (nearly O(|states| + |transitions|)) with a
good union-find implementation

GCPC 2012 Jury GCPC 2012 30.06.2012 7 /18

Vg,

w Pizza Hawaii

@ Given the ingredients of Pizzas in two languages

@ For each word determine which words could have
the same meaning in the other language

GCPC 2012 Jury GCPC 2012 30.06.2012 8 /18

w Pizza Hawaii

@ Given the ingredients of Pizzas in two languages

@ For each word determine which words could have
the same meaning in the other language

@ Solution: Match words which appear as ingredients
on the same set of Pizzas

GCPC 2012 Jury GCPC 2012 30.06.2012 8 /18

Vg,

w Pizza Hawaii

@ Given the ingredients of Pizzas in two languages

@ For each word determine which words could have
the same meaning in the other language

@ Solution: Match words which appear as ingredients
on the same set of Pizzas

@ Use bitmasks to specify for each ingredient the
subset of Pizzas on which this ingredient occurs.

GCPC 2012 Jury GCPC 2012 30.06.2012 8 /18

Vg,

w Pizza Hawaii

@ Given the ingredients of Pizzas in two languages

@ For each word determine which words could have
the same meaning in the other language

@ Solution: Match words which appear as ingredients
on the same set of Pizzas

@ Use bitmasks to specify for each ingredient the
subset of Pizzas on which this ingredient occurs.

@ Brute force over all pairs of words and check if their
corresponding bitmasks are equal

GCPC 2012 Jury GCPC 2012 30.06.2012 8 /18

M7

s Roller coaster fun

Normal Knapsack problems can be solved by either of
the two possible recursion equations:

GCPC 2012 Jury GCPC 2012 30.06.2012 9 /18

2

@ Roller coaster fun

Normal Knapsack problems can be solved by either of
the two possible recursion equations:

@ Unbounded Knapsack:

e dp[id — 1][size]
dp[id][size] = max {dp[id][SiZe — weight[id]] + profit[id]
e 0/1-Knapsack:

dplid — 1][size]

dplid]|size] =
plid][size] = max dplid — 1][size — weight[id]] + profit[id]

GCPC 2012 Jury GCPC 2012 30.06.2012

9/

18

M7

s Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values a;, b; and t;

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

@ Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values a;, b; and t;

e Case bj = 0 (unbounded knapsack):
dp[i][T] = max{dp[i — 1][T], dp[i][T — t;] + a;}

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

@ Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values a;, b; and t;

e Case bj = 0 (unbounded knapsack):
dp[i][T] = max{dp[i — 1][T], dp[i][T — t;] + a;}
e Case b; # 0 (0/1-knapsack?)

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

@ Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values a;, b; and t;

e Case bj = 0 (unbounded knapsack):

dp[i][T] = max{dp[i — 1][T], dp[i][T — t;] + a;}
e Case b; # 0 (0/1-knapsack?)

No!

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

s Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values a;, b; and t;

e Case bj = 0 (unbounded knapsack):

dp[i][T] = max{dp[i — 1][T], dp[i][T — t] + ai}
e Case b; # 0 (0/1-knapsack?)

No!

= split into J; items, where the k-th item has a

profit (fun) of a; — (k — 1)2- b; and weight (time) t;.
J; is the largest index where the profit is positive.

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

s Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values a;, b; and t;
e Case bj = 0 (unbounded knapsack):
dp[i][T] = max{dp[i — 1]|[T], dp[i][T — t;i] + ai}
e Case b; # 0 (0/1-knapsack?)
No!
= split into J; items, where the k-th item has a
profit (fun) of a; — (k — 1)?- b; and weight (time) t;.
J; is the largest index where the profit is positive.
Use 0/1-knapsack on those items!

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

2

@ Roller coaster fun

Time complexity:
@ Build table: O(N - Jyax © Tmax)
@ Query table entries: O(Q)

Only one testcase, Jyax < 32
= time complexity is sufficient

GCPC 2012 Jury GCPC 2012 30.06.2012 11 /18

M7

s Roller coaster fun

Memory complexity:
Size of table: N - J,.x - Thmax =~ 305MB

GCPC 2012 Jury GCPC 2012 30.06.2012 12 /18

@ Roller coaster fun

Memory complexity:
Size of table: N - J,.x - Thmax =~ 305MB

ldea:
@ Calculate table line by line
@ Only previous line necessary for calculation
@ Only last line is needed for the queries

GCPC 2012 Jury GCPC 2012

30.06.2012

12 /18

M7

s Roller coaster fun

Memory complexity:

Size of table: N - J,.x - Thmax = 305MB

ldea:
@ Calculate table line by line
@ Only previous line necessary for calculation
@ Only last line is needed for the queries

~» Memory: O(2 - Tax) < 1IMB

GCPC 2012 Jury GCPC 2012

30.06.2012

12 /18

e Find /
@ by solving for I — much math, paper and pencil
approach, O(1)
@ by binary search on /| — easy too implement, O(log N)

GCPC 2012 Jury GCPC 2012 30.06.2012 13 /18

@ Get landing speed |v|
@ v, = speed gained in approach, not changed during flight
@ v, = speed gained during flight (drop since approach)

GCPC 2012 Jury GCPC 2012 30.06.2012 13 /18

w Ski Jumping

@ Get landing angle
@ First derivatives of f and h yield slopes
©@ Obtain slopes at landing point
© Write slopes as vector and apply given equation
© Convert rad to degree

GCPC 2012 Jury GCPC 2012 30.06.2012 13 /18

Suffix Array RE-construction

@ Problem: Reconstruct a full string from a partial set
of suffixes

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Suffix Array RE-construction

@ Problem: Reconstruct a full string from a partial set
of suffixes

@ Straight forward task, special character ’*°’ occurs
at most once per suffix

@ Fill in characters into output string, print
IMPOSSIBLE whenever a conflict occurs or
characters are missing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[(Als[efrfifofsw[[[T TTTTTT]T]

1 AStringW*Conflicts — 1 AStringW
12 Conflicts

16 Licts

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Suffix Array RE-construction

@ Problem: Reconstruct a full string from a partial set
of suffixes

@ Straight forward task, special character ’*°’ occurs
at most once per suffix

@ Fill in characters into output string, print
IMPOSSIBLE whenever a conflict occurs or
characters are missing

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
[AlsTefefinfs[w] [[Jefe[ne[nife]e]s]

1 AStringW*Conflicts — 1 AStringW
12 Conflicts

16 Licts

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Suffix Array RE-construction

@ Problem: Reconstruct a full string from a partial set
of suffixes

@ Straight forward task, special character ’*°’ occurs
at most once per suffix

@ Fill in characters into output string, print
IMPOSSIBLE whenever a conflict occurs or
characters are missing

12 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[AlsTefefiofs[wliJe[ufefene[n]ife e]s]

1 AStringW*Conflicts — 1 AStringW
12 Conflicts

16 Licts

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Suffix Array RE-construction

@ Problem: Reconstruct a full string from a partial set
of suffixes

@ Straight forward task, special character ’*°’ occurs
at most once per suffix

@ Fill in characters into output string, print
IMPOSSIBLE whenever a conflict occurs or
characters are missing

8 9]0]11213141u1017181920

1 2 34567
[AlsTe[rTi[nefwli[e[n]clon] i Tele]

1 AStringW*Conflicts — 1 AStringW
12 Conflicts

16 Licts

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Touchscreen Keyboard

@ intended to be the easiest problem

GCPC 2012 Jury GCPC 2012 30.06.2012 15 / 18

Touchscreen Keyboard

@ intended to be the easiest problem

@ calculate distance between letters:
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};
for(i,0..3) for(j,0..keys[i].size()) {
x[keys[i]l [j1] = i;
y[keys[i] [j1] = j;

GCPC 2012 Jury GCPC 2012 30.06.2012 15 / 18

Touchscreen Keyboard

@ intended to be the easiest problem

@ calculate distance between letters:
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};
for(i,0..3) for(j,0..keys[il.size()) {
x[keys[il[j1] = i;
y[keys[i] [j1] = j;
}
@ compute distance sums:
for(i,0..n) sum += abs(x[refl[i]l]l-x[curlill)
+ abs(yl[ref[il]l-y[cur[i]]);

GCPC 2012 Jury GCPC 2012 30.06.2012 15 / 18

Touchscreen Keyboard

@ intended to be the easiest problem

@ calculate distance between letters:
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};
for(i,0..3) for(j,0..keys[il.size()) {
xlkeys[i1[§11 = 1i;
y[keys[i] [j1] = j;
}
@ compute distance sums:

for(i,0..n) sum += abs(x[refl[i]l]l-x[curlill)
+ abs(ylref[il]l-y[curl[ill);

@ sort and print

GCPC 2012 Jury GCPC 2012 30.06.2012 15 / 18

s Track Smoothing

scale with f

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

s Track Smoothing

border with distance r

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

s Track Smoothing

f- track_length

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

s Track Smoothing

f- track_length + 2rm

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

Track Smoothing

f- track length + 2rm = track_length

__ track_length—2r7
o f= track_length

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

Track Smoothing

f- track length + 2rm = track_length

__ track_length—2r7
o f= track_length

@ negative = “Not possible”

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

Vg,

@ Ireasure Diving

@ Problem: decide how many Treasures a diver can
rescue from a cave network using a limited air
budget

GCPC 2012 Jury GCPC 2012 30.06.2012 17 / 18

Treasure Diving

@ Problem: decide how many Treasures a diver can
rescue from a cave network using a limited air
budget

@ Classical TSP instance, with a minor twist

@ The diver does not have to collect all treasures, only
maximal number possible
@ Two step approach

e calculate distance table
(at most 8 Treasures + exit — 9x9 Table)

e perform backtracking on table, recursing only if air
sufficient for the return

GCPC 2012 Jury GCPC 2012 30.06.2012 17 / 18

Award Ceremony

