
GCPC 2012

30.06.2012

The Problem Set

No Title Page
A Battleship 3
B BrainFuckVM 5
C Candy Distribution 7
D Outsourcing 9
E Pizza Hawaii 11
F Roller coaster fun 13
G Ski Jumping 15
H Suffix Array Re-construction 17
I Touchscreen Keyboard 19
J Track Smoothing 21
K Treasure Diving 23

Good luck and have fun!

hosted by sponsored by

These problem texts are copyright by the GCPC 2012 jury.
They are licensed under the Creative Commons Attribution-Share
Alike license version 3.0; The complete license text can be found at:
http://creativecommons.org/licenses/by-sa/3.0/legalcode

2

Problem A

Battleship

When playing battleship, players take turns trying to sink the other players navy. Each player may
take shots at one coordinate at once. If he hits one of his enemy’s ships and the enemy has any
other ships left, he may continue. Else, the other player may take shots. After hitting a ship at one
coordinate, shooting at that coordinate again counts as a miss.
The game is finished when every part of every ship of a navy of one player has been hit. The first
player starts, and every player gets the same number of turns. That means, that the second player
might get another turn even if all his ships have been sunk.
The game ends with a draw if both navies are completely sunk, or if there are still ships left after
all shots have been fired.

Tom the little spy watches a game of battleships between two fleet admirals. As he has successfully
tapped the communication wires, he can intercept the shot orders. However, he was unable to
determine which admiral ordered what shot to be fired.
After the game, he successfully breaks into the super secret game management facility, and manages
to secure the fleet deployment maps. As he wants to determine which fleet admiral is more dangerous,
he wants to know which admiral won.
He transmits the deployment maps and the shot orders, and wants you to determine which admiral
won.

Input

Input starts with one line, containing the number of test cases t (0 < t ≤ 20).
Every test case starts with a line, containing three integers w, h and n (1 ≤ w, h ≤ 30; 1 ≤ n ≤ 2000),
describing the width and height of the fleet deployment maps, and the number of shots.
The next h lines contain the deployment map for player one. Each line contains w field descriptions,
where ’ ’ means “water” and ’#’ means “ship”. Then follow h lines containing the deployment map
for player two.
The following n lines contain the shot orders; each order consists of two integers, the x and y
coordinate of the shot. The x coordinate indicates the column of the shot, running from 0 to w− 1,
with 0 meaning the leftmost column. The y coordinate indicates the line of the shot, running from
0 to h− 1, with 0 meaning the last line, and h− 1 meaning the first line of the respective map.
Please note that there may be more shot orders than needed to end the game.

Output

For every test case, print one of “player one wins”, “player two wins” or “draw”, on a line.

3

Sample Input Sample Output

2

4 4 5

#___

#___

___#

0 0

1 1

0 3

0 2

0 1

2 2 5

_#

#_

#_

#_

1 0

0 0

0 0

1 1

0 1

player two wins

draw

4

Problem B

BrainFuckVM

Given a brainfuck program, determine whether it terminates or enters an endless loop.

A brainfuck interpreter has a data array (consisting of unsigned 8-bit integers) with an index, the
so called “data index”; the entry of the array pointed to by the data index is the so called “current
entry”. A brainfuck program consists of a sequence of the following eight instructions:

- decrease current entry by 1 (modulo 28)
+ increase current entry by 1 (modulo 28)
< decrease data index by 1
> increase data index by 1
[jump behind the matching], if the current entry is equal to 0
] jump behind the matching [if the current entry is not equal to 0
. print the current entry as character
, read a character and save it into the current entry. On end of input save 255.

Interpretation of a brainfuck program starts at the first instruction, and terminates if the instruc-
tion pointer leaves the end of the program. After an instruction is executed, the instruction pointer
advances to the instruction to the right (except, of course, if the loop instructions [or] cause a jump).

In addition to the program, you will be given the size of the data array. The entries of the data
array shall be unsigned 8-bit integers, with usual over- or underflow behaviour. At the start of the
program, the data array entries and the data index shall be initialized to zero.

Incrementing or decrementing the data index beyond the boundaries of the data array shall make it
re-enter the data array at the other boundary; e.g. decrementing the data index when it is zero shall
set it to the size of the data array minus one.

The [and] instructions define loops and are allowed to nest. Every given program will be well-
formed, i.e. when traversing the program from left to right, the number of [instructions minus the
number of] instructions will always be greater or equal zero, and at the end of the program it will
be equal to zero.

For the purposes of the problem, discard the output of the interpreted program. 1

Input

The input starts with a line containing the number of test cases t (0 < t ≤ 20). Each test case consists
of three lines. The first line contains three integers sm, sc, si, describing the size of the memory, the
size of the program code and the size of the input (0 < sm ≤ 100 000; 0 < sc, si < 4 096).
The second line contains the brainfuck program code to be executed; it consists of sc characters.
The third line contains the input of the program, as text (only printable, non-whitespace characters).
Once the program has consumed all available input, the input instruction shall set the current cell
to 255.

Output

For each test case, print one line, containing either “Terminates” or “Loops”, depending on whether
the program either terminates after a finite number of steps, or enters an endless loop. If the
program loops, also print the indices (0-based) of the two [and the] symbols in the code array that
correspond to the endless loop. You may safely assume that after 50 000 000 instructions, a program
either terminated or hangs in an endless loop, which then was executed at least once. During each
iteration of the endless loop at most 50 000 000 instructions are executed.

1For purposes of debugging, you may examine it. The third program from the sample input would print “ICPC”;
the fourth program, when given an arbitrary string, will print a brainfuck program, that in turn will print said arbitrary
string when executed.

5

Sample Input

4

10 4 3

+-.,

qwe

1000 5 1

+[+-]

a

100 74 4

+++++[->++<]>[-<+++++++>]<[->+>+>+>+<<<<]>+++>--->++++++++++>---<<<.>.>.>.

xxyz

9999 52 14

+++++[>+++++++++<-],+[-[>--.++>+<<-]>+.->[<.>-]<<,+]

this_is_a_test

Sample Output

Terminates

Loops 1 4

Terminates

Terminates

6

Problem C

Candy Distribution

Kids like candies, so much that they start beating each other if the candies are not fairly distributed.
So on your next party, you better start thinking before you buy the candies.
If there are K kids, we of course need K · X candies for a fair distribution, where X is a positive
natural number. But we learned that always at least one kid looses one candy, so better be prepared
with exactly one spare candy, resulting in (K ·X) + 1 candies.
Usually, the candies are packed into bags with a fixed number of candies C. We will buy some of
these bags so that the above constraints are fulfilled.

Input

The first line gives the number of test cases t (0 < t < 100). Each test case is specified by two
integers K and C on a single line, where K is the number of kids and C the number of candies in
one bag (1 ≤ K,C ≤ 109). As you money is limited, you will never buy more than 109 candy bags.

Output

For each test case, print one line. If there is no such number of candy bugs to fulfill the above
constraints, print “IMPOSSIBLE” instead. Otherwise print the number of candy bags, you want to
buy. If there is more than one solution, any will do.

Sample Input Sample Output

5

10 5

10 7

1337 23

123454321 42

999999937 142857133

IMPOSSIBLE

3

872

14696943

166666655

7

This page is intentionally left (almost) blank.

8

Problem D

Outsourcing

Mr. Cooper is a manufacturer of science fiction action figures and he thinks that his local factory
causes too many costs. He once heard of certain foreign countries where workers are much less
expensive and also more dedicated. So he decided to look for an available action figure factory in
some low-wage country to follow the current trend of Outsourcing.
It is of course indispensable for him to know if the new factory is capable of producing exactly the
same sorts of action figures as the current one. The manufacturing process is organised in terms of
assembly stations and transfer stations. An assembly station receives parts from a transfer station,
performs a specific operation on the parts and delivers it to a transfer station. The factories have one
starting transfer station delivering raw parts and one final transfer station receiving the completed
action figures.
One sort of action figures needs a precise sequence s1, s2, s3, . . . , s` of assembly operations. A factory
can produce these action figures if there are transfer stations t0, t1, · · · , t` such that t0 is the starting
station, t` is the final station, and for all 1 ≤ i ≤ ` there is an assembly station that receives from
ti−1, delivers to ti, and performs operation si.
Hence, Mr. Cooper wants to know if the local factory and the foreign factory can produce exactly
the same sorts of action figures. He recognizes that answering this question may be an involved
challenge. So, he decides to spend an amount of his yet to save money on you, to make you develop
a computer solution for his problem.

Input

Input starts with a line containing one integer t, the number of test cases (0 < t ≤ 100). Each test
case starts with a line of six integers M1, N1,K1,M2, N2, and K2, where the local factory has M1

assembly stations, N1 transfer stations and K1 different assembly operations (1 ≤ M1 ≤ 105; 1 ≤
N1 ≤ 250; 1 ≤ K1 ≤ 250). The transfer stations are numbered from 0 to N1 − 1 and 0 denotes
the starting station and N1 − 1 the final station. Then input is followed by M1 lines specifying
the assembly stations of the local factory. Every line contains three integers, Tin, Tout, S, where Tin

is the transfer station delivering to the assembly station, Tout is the transfer station receiving the
assembly results and S gives the performed operation by a number between 0 and K1− 1. For every
transfer station it is guaranteed that there are not two receiving assembly stations performing the
same operation. The foreign factory is described analogously by M2, N2 and K2 and consequently
the next M2 lines of input describe the assembly stations of the foreign factory.

Output

For every test case print a line containing “eligible” if the local and the foreign factory are capable
of manufacturing exactly the same action figures and otherwise print “not eligible”.

Sample Input Sample Output

2

3 4 2 3 4 3

0 2 1

1 3 0

2 3 0

0 2 1

2 1 2

2 3 0

3 3 2 2 2 2

0 1 0

1 1 0

1 2 1

0 0 0

0 1 1

eligible

not eligible

9

This page is intentionally left (almost) blank.

10

Problem E

Pizza Hawaii

You are travelling in a foreign country. Although you are also open to eat some regional food, you
just cannot resist after you have found an Italian restaurant which offers pizza. Unfortunately the
menu is written in the foreign language, so the list of ingredients of the pizzas are incomprehensible
to you. What will you do?
One thing that you notice is that each pizza has an Italian name, which sounds quite familiar to
you. You even remember for each named pizza what the ingredients of this pizza usually are. You
want to use that information to figure out what the possible meaning of each word on the list of
ingredients is.

Input

The first line of the input gives the number of test cases t (0 < t ≤ 20). The first line of each
input gives the number n of pizzas on the menu (1 ≤ n ≤ 60). The following 3 · n lines describe the
pizzas on the menu. Each pizza description starts with one line containing the name of the pizza.
The name of the pizza consists of between 3 and 20 uppercase and lowercase letters. The next line
starts with an integer mi, giving the number of ingredients of the pizza on the menu (1 ≤ mi ≤ 20).
The rest of the line contains the mi ingredients separated by spaces. Each ingredient is a word
consisting of between 2 and 20 lowercase letters. The third line of each pizza description gives the
ingredients in your native language in the same format. Note that the number of ingredients may
differ, because each restaurant may use slightly different ingredients for pizzas with the same name,
so the ingredients you remember for a pizza with that name may not match the actual ingredients.

Output

For each test case print all pairs of words (w1, w2) where w1 is an ingredient in the foreign language
that could be the same ingredient as w2 because w1 and w2 appear on the same set of pizzas. Sort
the pairs in increasing lexicographical order by w1, and in case of a tie in increasing lexicographical
order by w2. Print a blank line between different test cases.

Sample Input Sample Output

2

3

Hawaii

4 tomaten schinken ananas kaese

4 pineapple tomatoes ham cheese

QuattroStagioni

6 tomaten kaese salami thunfisch spinat champignons

6 mushrooms tomatoes cheese peppers ham salami

Capricciosa

6 champignons kaese tomaten artischocken oliven schinken

5 cheese tomatoes mushrooms ham artichoke

1

Funghi

3 tomaten kaese champignons

3 cheese tomatoes mushrooms

(ananas, pineapple)

(artischocken, artichoke)

(champignons, mushrooms)

(kaese, cheese)

(kaese, ham)

(kaese, tomatoes)

(oliven, artichoke)

(salami, peppers)

(salami, salami)

(spinat, peppers)

(spinat, salami)

(thunfisch, peppers)

(thunfisch, salami)

(tomaten, cheese)

(tomaten, ham)

(tomaten, tomatoes)

(champignons, cheese)

(champignons, mushrooms)

(champignons, tomatoes)

(kaese, cheese)

(kaese, mushrooms)

(kaese, tomatoes)

(tomaten, cheese)

(tomaten, mushrooms)

(tomaten, tomatoes)

11

This page is intentionally left (almost) blank.

12

Problem F

Roller coaster fun

Jimmy and his friends like to visit large theme parks. In the current theme park there are many
roller coasters which then are categorized by Jimmy. He assigns a fun value to each coaster; however,
the fun decreases with each run.

More formal: for a specific roller coaster i, Jimmy assigns two fun coefficients ai and bi. While riding
this roller coaster for the k-th time, Jimmy gains a fun value of f(i, k) = ai − (k − 1)2 · bi. If f(i, k)
is non-positive, riding the roller coaster is no longer funny.

Jimmy tries to maximize the total fun until he leaves the park. Can you tell Jimmy how much fun
he can gain for a given time?

Input

The input consists of a single test case.
The first line contains the integer N , where N is the amount of different roller coasters in the theme
park (0 < N ≤ 100).
The following N lines contain the integers ai, bi and ti where ai and bi are the fun coefficients as
specified above and ti is the time for a single ride with the i-th roller coaster (0 ≤ ai ≤ 1 000;
0 ≤ bi ≤ 1 000; 0 < ti ≤ 25 000).
The next line contains a positive integer Q denoting the number of times that Jimmy is visiting the
park (0 ≤ Q ≤ 1 000). Each of the following Q lines contains an integral time Ti that Jimmy spends
during his i-th visit (0 ≤ Ti ≤ 25 000).

Output

For each of the Q possible times, print one line containing the maximal total fun value if Jimmy
spends Ti minutes in the theme park.

Sample Input I Sample Output I

2

5 0 5

7 0 7

4

88

5

6

7

88

5

5

7

Sample Input II Sample Output II

1

100 3 2

5

2

3

4

5

100

100

100

197

197

435

13

This page is intentionally left (almost) blank.

14

Problem G

Ski Jumping

Ski jumping is one of the most popular winter sport competitions. In the chase of records, ski
jumping hills become larger and larger. To ensure the safety of the competitors, landing speed and
angle must not exceed critical margins defined by the FIS. Today, it’s your task to assess these values
for a newly constructed ski jumping arena shown in the figure.

Instead of doing measurements in the field, you can use a little math to solve your problem, since
the hill has the following shape:

h(l) =

H l < 0

H ·
(

1− 2 ·
(

l
L

)2)
0 ≤ l < L

2

2H ·
(

l
L − 1

)2 L
2 ≤ l < L

0 L ≤ l

(1)

where l is the position on the x-axis with its origin in the beginning of the hill. H is the height
and L is the width of the hill; j is the maximum starting height of the ski-jump and p is the height
difference between the end of the (ski-jump) approach and the top of the hill. Assuming that friction
plays no important role and since the critical margins are defined for a flight without any influence
of wind, you may utilize the following flight curve:

f(l) = −g
2
·
(
l

v0

)2

+H + p (0 ≤ l ∧ f(l) ≥ h(l)) (2)

where v0 is the speed gained in the approach. You can obtain this value from the law of energy
conservation. Potential and kinetic energy are defined as follows:

Ekin =
1

2
×mass× speed2 , Epot = mass× g × height . (3)

In all equations, g is the gravitational constant (g ≈ 9.81 m s−2).

Hints:
The inner product of two vectors ~a and ~b is defined as:

~a ·~b = |~a| · |~b| · cos](~a,~b) (4)

15

Input

Input starts with the number of test cases t on a single line (0 < t < 160 000).
Every test case consists of a single line containing four positive integers j, p, H, and L as defined in
the problem statement (0 < j, p,H,L ≤ 500). The unit of all values is meter.

Output

For every test case, print one line containing

• the landing position l on the x-axis,

• the landing speed |vl| of the jumper (in meters per second), and

• the speed-angle α (in degree) with respect to the hill (see the figure).

The values must be separated by a single blank. An absolute or relative error of 10−4 is tolerated.

Sample Input Sample Output

3

50 5 10 100

50 5 30 100

50 5 50 100

40.82482905 33.83045965 12.93315449

81.04978134 40.31656580 26.21334827

104.8808848 45.38832449 46.36470132

16

Problem H

Suffix Array Re-construction

It has been a long day at your new job. You have spent all day optimizing the most important Suffix-
Array data structures your new employer, the GCPC ([G]lobal Suffix [C]ollecting and [P]rocessing
[C]ollective),works with. The moment you were just about to shut down your workstation you stop
and stare at the monitor. Your test run just has revealed that large portions of the important data
must be corrupted. Sadly, the Company’s backup servers just crashed yesterday, and now you may
have destroyed the valuable Suffix-Arrays.

On inspecting the data, you find that it could hardly be worse. A lot of the suffixes are missing and
even the ones remaining might be broken. You have found examples wherein parts of the letters have
been replaced by random letters, and in some parts you find a single ’*’, your placeholder character
you used in the software. This placeholder has replaced an arbitrarily large substring. Furthermore,
you found some inconsistent strings, for which it is not clear which version of the character is the
right one. Your only chance now is to hope and pray that a recovery is possible.

The data is given as a list of suffixes, together with the start-position of the suffix. You also still
have a list of the length of all the data-sets the company has in stock. Can you possibly reconstruct
at least the base strings? If so, one could run one of those fancy new Suffix-Array algorithms to
reconstruct the full data-set again.

Input

Each test set consists of multiple test cases t (0 < t ≤ 100). The number of test cases is given
on a single line at the beginning of the input. Every test case is composed as follows. First, on a
single line, the length l of the desired output string is given, together with the number of (partially
broken) suffixes s (1 ≤ l ≤ 10 000; 1 ≤ s ≤ 10 000). Then s lines follow, giving the position p of the
suffix in the string and the suffix (1 ≤ p ≤ l). The suffix will contain only characters from the set of
{a, . . . , z, A, . . . , Z, ., ∗} (the ’.’ has no special meaning). The total sum of characters given for the
suffixes will not exceed 250 000.

Output

Whenever it is possible to reconstruct the lost input data print the reconstructed sentence, else print
“IMPOSSIBLE” on a single line. For our case, the recovery is only possible if the set of possible
characters for a position in the string contains exactly one character.

Sample Input Sample Output

2

6 6

6 a

5 aa

4 a*a

3 aaaa

2 aaaaa

1 aaaaaa

6 6

6 b

5 aa

4 a*a

3 aaaa

2 aaaaa

1 aaaaaa

aaaaaa

IMPOSSIBLE

17

This page is intentionally left (almost) blank.

18

Problem I

Touchscreen Keyboard

Nowadays, people do not use hardware keyboards but touchscreens. Usually, they touch on the
wrong letters with their chunky fingers, because screen space is precious and the letters therefore
too small.
Usually, a spell checker runs after typing a word and suggests other words to select the correct
spelling from. Your job is to order that list so that more likely words are on top.
The typical touchscreen keyboard looks like this:

qwertyuiop

asdfghjkl

zxcvbnm

You should use the distance between the letters to type a word: the distance is the sum of the
horizontal and vertical distance between the typed and proposed letter. Assume you typed a w, the
distance to e is 1, while the distance to z is 3.
The typed word and the list of words from the spell checker all have the same length. The distance
between two words is the sum of the letter distances. So the distance between ifpv and icpc is 3.

Input

The first line of the input specifies the number of test cases t (0 < t < 20). Each test case starts with
a string and an integer l on one line. The string gives the word that was typed using the touchscreen
keyboard, while l specifies the number of entries in the spell checker list (0 < l ≤ 10). Then follow l
lines, each with one word of the spell checker list. You may safely assume that all words of one test
case have the same length and no word is longer than 10 000 characters (only lowercase ’a’ - ’z’).
Furthermore, each word appears exactly once in the spell checker list on one test case.

Output

For each test case, print the list of words sorted by their distance ascending. If two words have the
same distance, sort them alphabetically. Print the distance of each word in the same line.

Sample Input Sample Output

2

ifpv 3

iopc

icpc

gcpc

edc 5

wsx

edc

rfv

plm

qed

icpc 3

gcpc 7

iopc 7

edc 0

rfv 3

wsx 3

qed 4

plm 17

19

This page is intentionally left (almost) blank.

20

Problem J

Track Smoothing
Bob has the task to plan a racing track of a specific length. He thought it is a great idea to just form
a convex polygon that has exactly the required length. Then he was told that racing cars cannot
drive such sharp corners like in his plan.
He has to ensure some minimal radius for all curves in his track. Bobs loves the shape of his track,
so he don’t want to change it too much. His plan is to scale the track down around the balance point
of the polygon that specifies his track. Then, he wants to draw the new track with a line that has
a constant distance to the scaled track. The chosen distance should be minimal distance that fulfils
the given minimum radius constraint. He asks you to write a program to calculate the scale factor
for a given track and minimum radius so that the resulting track has the same length as the one of
his original plan.
Bob made some drawings of the first test case:

Figure 1 – Original track and scaled down track Figure 2 – Scaled down track and resulting track

Input

The input starts with the number of test cases t (0 < t ≤ 100). Every test case starts with a line
consisting of two integers: the minimal required radius r and the number of points n of the original
track polygon (0 ≤ r ≤ 1 000; 3 ≤ n ≤ 10 000). Then n lines follow, where each line specifies
2D-coordinates as two integers xi and yi (−10 000 ≤ xi, yi ≤ 10 000). (0, 0) is the lower left corner.
These are the coordinates of the original track in counterclockwise direction. You may safely assume
that the area of the given polygon is non-empty.

Output

For each test case print out one line. If it is possible to construct a course according to the above
description, output the scaling factor, “Not possible” otherwise. The factor must have a relative
or absolute error smaller than 10−5.

Sample Input Sample Output

2

20 5

10 0

110 0

130 20

0 150

0 10

1 5

0 0

1 0

2 0

2 1

0 1

0.730494

Not possible

21

This page is intentionally left (almost) blank.

22

Problem K

Treasure Diving

Legends often tell of great treasures. But you rarely get the chance to actually stumble upon those
treasures. Most of them are lost in the sea, or hidden below mountains. But as you learned from
one of your biggest idols, treasures do belong into a museum. And now you have the chance to make
that happen.

On an expedition you found a large cave network. A native shaman has spoken about incredible
values his ancestors have hidden in the caves. He even gave you an ancient map, depicting the cave
network and the location of the treasures within. Sadly, the cave network is completely flooded.
Since the trip out here takes forever, you decided to do a short dive and scout out the cave network.
But on your arrival back at the entrance to the cave network you get the news. . . a volcano just
erupted nearby. It is next to guaranteed that the lava will cover the entries to the cave network and
the treasures will be lost forever.

That puts you on the spot. You only have a short time left, and only one lousy tank of air. So it is
all on you. You only have time for a single dive. But how could you possible decide which route to
take? The cave network is huge, and you should definitely try and rescue as much of the treasures
as possible. You think back to your times as a computer scientist at the university. . . And then it
hits you. You still have your laptop with you. You could write a program to help you figure out the
best you can do in rescuing the treasures.
You may assume that neither locating or picking up a treasure within a cave nor the traversal of a
cave consumes any air.

Input

Each test set consists of multiple test cases. The file starts with a single number t (0 < t ≤ 2000) on
a single line, denoting the number of testcases in the file. Each test case starts with two integers n
and m on a single line, where n the number of caves and m the number of the connecting tunnels in
the network (1 ≤ n ≤ 10 000; 0 ≤ m ≤ 50 000). This line is followed by m lines, giving a description
of the tunnels of the cave as three integers a b and l with a, b denoting caves and l giving the
amount of air necessary for diving through the tunnel (0 ≤ a, b < n; 0 ≤ l ≤ 500). After the tunnels
follows an integer i on a single line, giving the number of idols in the cave system (0 ≤ i ≤ 8). This
line is followed by a single line containing i integers p1, . . . , pi giving the caves withing the network
conaining an idol (0 ≤ p1, . . . , pi < n). The input is concluded by a single number, giving the liters
of air a you have available (0 ≤ a ≤ 1 000 000). You will always start (and end) at the node with the
label 0.

Output

For each test case print a number X on a single line, where X is replaced by the maximal number of
idols the diver can recover.

23

Sample Input Sample Output

3

5 3

0 1 10

0 2 20

0 3 30

4

1 2 3 4

30

5 3

0 1 10

0 2 20

0 3 30

4

1 2 3 4

60

5 3

0 1 10

0 2 20

0 3 30

4

1 2 3 4

10000

1

2

3

24

